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ON THE TRADEOFF BETWEEN DRIFT AND VARIANCE

by

A. R. Washburn

1. INTRODUCTION

A particle with fixed speed v that simultaneously

wants to behave evasively and drift from one point to another in

two dimensions has a conflict: If it drifts the maximum distance

vt in a fixed time t, then it is forced to travel in an

absolutely unevasive straight line. On the other hand, drift

will not be maximal if the particle's motion is some sort of

an evasive random walk. The purpose of this note is to report

on an exploration of quantitative tradeoffs between these

objectives.

2. PROBLEM FORMULATION

Let the positive x-axis represent the desired direction

of drift, and suppose that the target goes from the origin to

(X
fc

,Y ) in time t. Let x(t) = E(X
fc

) and y(t) = E (Y
fc

) , let

S be the distance from (x(t) , y(t)) to (X ,Y ) , and let

2 2
R. be the distance from the origin to (X. ,Y. ) . Let a. = E(S.

)

t t t t t
2

be the measure of variance and x (t) be the measure of drift.

Then

(1) a
2

+ x
2
(t) £ a

2
+ x

2
(t) + y

2
(t)

= E(x
2

+ Y
2

) = E(R2
) £ (vt)

2



? 2 2
From (1), (vt) is an upper bound on a

fc

+ x (t), and this

upper bound will be nearly achieved if

a) y(t) =

b) the target's track is nearly a straight line,

2 2
since in that case E(R.) ~ (vt)

t ~

For example, if the particle were to flip a coin to decide

2 2 2
whether its course should be 9 or -8, then a + x (t) = (vt) ,

2 2
with x (t) being largest when e is and a

fc

being largest

when 6 is tt/2. The course should never be changed at any

time; if there is any possibility of a course change in [0,t],

then a
2

t
+ x

2
(t) < (vt)

2
.

The above analysis leaves one with a feeling of dissatis-

2
faction with the measure of variance a, , since maximization of

2 2
o with a constraint on x (t) leads to the adoption of an

intuitively unevasive motion. A tracker who saw the particle begin

its motion would have no difficulty extrapolating the track if he

ever lost contact; once the initial direction 9 is known,

the particle's motion is deterministic. If the time origin were

taken to be any time greater than 0, and if the prediction of

future position were the conditional expectation given all past

movements, then the particle's motion would not be evasive at all.

2The above considerations lead to the adoption of s as

2
the measure of variance, where s is variance from the conditional

expectation of position given all past movements, averaged over

2all past movements. In order to simplify computation of s ,



assume that the particle's course is a stationary Markov stochastic

process, in which case the predictive power of ail past motion is

the same as the predictive power of current course. There are

many such processes, from which we select a discontinuous one

and a continuous one for further study. The natural discontinuous

process is a "random tour" [3], where the particle changes direction

only at the jump points of a Poisson process. The natural con-

tinuous process is the Ornstein-Uhlenbeck process, which is the only

stationary Markov process that is normal. Figure 1 shows the ratio

2 2 2 2 2
s./((vt) - x (t)) as a function of (x(t)/vt) , where s is in

both cases maximal for the given value of x(t) . The rest of this

paper consists of the computations lying behind Figure 1. Note

that in both cases

(2) s
2
£ . 381[(vt)

2
- x

2
(t)] (OU, random tour)

An additional result is relevant. In [2], Grenander

2
formulates an analytic expression for s when the particle's

course is any stationary process. The expression is in general

very cumbersome, but in the special case where the process is

normal and x(t) ~ vt, Grenander is able to exhibit the stationary

2 2
process (it is not Markov) that maximizes s . The maximum s. is

(3) s
2

= ~ ((vt)
2

- x
2
(t)) = ,405((vt)

2
- x

2
(t)).

7T



Evidently, the natural way to discuss the tradeoff

between drift and variance is in terms of the ratio

2 2 2
R = s ,/((vt) -x (t)). The maximum possible value of R amongst

all stationary processes is unknown, but it appears to be con-

siderably smaller than 1.0, which is the bound obtained from

equation (1) by observing that s, <_ a .



3 RANDOM TOUR CALCULATIONS

Assume without loss of generality that the particle's

speed is v = 1.0. The particle is assumed to pick an independent,

identically distributed sequence of courses 9,/ 0-,... from

some distribution for which E(sin 9) = 0. Each course holds

for a time that is exponential with mean 1/X , after which a

2
new course is adopted, etc. Let E(cos 0) = c,, E(cos 0) = <z~,

x
Q
(t) = E(X

t l9
1

= 9), y
Q
(t) = E(Y

t
l9

1
=9), v

x
(t) = E(X^),

2
v (t) = E(Y ) and retain the definitions of x(t) and y(t)

made earlier. Since

(4) s\ = E([X
t

- x
Q
(t)]

2
+ [Y

t
- Y

9
(t)]

2
)

= v
x
(t) + v

y
(t) - E(Xg(t) + yg(t)) ,

the functions that need to be determined are x„(t), y
fl

(t),

v (t) , and v (t) .

We know

(5) E(x (t)) = x(t) = tc
1

Let U be the time of the first course change, and let f(u)

= A exp(-Xu) be the density function of U. Then

(6) E(X
t
l9

1
= 0, U=u) =

u cos 9 + x(t-u)

t cos

if u < t

if u > t



Therefore, by conditional probability,

t

(7) x Q (t) = / [u cos + x(t-u) ] f(u)du + t cos 9 / f(u)du
9 t

After performing the integrations,

(8) x
Q
(t) = cos 9(1-(1+Xt) exp(-Xt))/X + x*f(t) +t cos 9 exp(-At)

where x*f (t) is the convolution of x(t) and f (t) . Let

X(s) , X (s), and F(s) be the Laplace transforms of x(t) , x
fl

(t),

2and f(t), respectively. Then X(s) = c,/s and F(s) = X/(X+s).

After cancelling t cos 9 exp(-Xt) in (8) and taking Laplace

transforms of both sides,

(9) XX
Q
(s) = cos 9(l/s - l/(X+s)) + c

1
X
2
/(s

2
(s+X))

Inverting the Laplace transform X n (s), and letting

z = Xt,

(10) Xx
Q
(t) = cos 9(1 - exp(-z)) + ^ ( z - 1 + exp(-z)),

or

(11) Xx
Q
(t) = (cos 9 - c

±
) (1 - exp(-z)) + c^z .

Squaring both sides of (11) and taking expected values,

(12) X
2E(x2

(t)) = (c
2

- c
2

) (1 - exp(-z)) 2
+ c

2
z
2



There are no cross product terms in (12) because 2 (cos 9 - c, ) =

c~ - c, is just the variance of cos 9. A similar analysis shows

(13) A
2
E(y

2
(t)) = (s

2
- s

2
) (1 - exp(-z))

2
+ s

2
z
2

. 2
where s, = E(sin 9) = and s

2
= E(sin 9) . Adding (12) and

(13) and noting that c 2 + s 2
= ^

'

(14) A
2E(x2

(t) + y
2
(t)) = (1-c

2
) (1 - exp(-z)) 2

+ c
2
z
2

We use a similar technique to obtain formulas for v ( t)

and v
Y

( t)

(15) E(x£|u=u) =

u c + 2uc x(t-u) + v (t-u)

t
2
c

if u < t

if u > t

(16) v
x
(t) = / [

u c
2

+ 2uc
1
x ( t_u )

+ v
X
(t~u)] f ( u > du

oo

+ t
2
c 9 / f(u)du

After doing the integration, cancelling the t c~ exp(-At) term,

taking Laplace transforms, and simplifying,



(17) vv< s ). = 2c
2
/(s

2
U+s) ) + 2c

2
A/(s

3
(A+s)) ,

where V (s) is the Laplace transform of v
x
(t) . Inverting, with

z = At,

o 2 2 2
(18) A vx

(t) = 2(c
2

- c
1

) (z - 1 + exp(-z)) + z c
1

Similarly,

2 2 2 2
(19) A v (t) = 2(s

2
- s

1
)(z - 1 + exp(-z)) + z s±

Substituting (14), (18), and (19) into (4),

(20) A
2
s^ = (1 - c

2 )(2z - 2(1 - exp(-z)) - (1 - exp(-z))
2
),

or

(21) s
2

= t
2
(l - c

2
) g(z) ,

where

(22) g(z) = (2z - 2(1 - exp(-z)) - (1 - exp (-z)

)

2
)
/z

2

The function g(z) has a maximum at z = 1.9, and

g(1.9) = .381. Since t (1-c,) = t -x
2
(t), (21) is thus con-

sistent with (2) . Note that A should be set to make the

number of turns in time t be 1.9, on the average.



4. ORNSTEIN-UHLENBECK CALCULATIONS

The O-U process is governed by two numbers a and 3

The equilibrium distribution is normal with mean and variance

3; i.e., ~N(0,8). From Feller [1],

(23) ~ N(p0
v/

3 (1-p
2
)) for u _> v

where p = exp (-a(u-v) ) . The parameter a is thus a smoothing

constant, with small values of a corresponding to smooth

processes. In the following, we will repeatedly use the fact

2
that, if 9~N(y,a), then E (cos 0) = (cos y) exp(-a /2) and

2
E(sin 0) = (sin y) exp(-a /2) .

The notation and plan are as in the random tour analysis;

2
i.e. we plan to employ (4) in obtaining an equation for s . We

first note that

t t

(24) x Q (t) = E(/ cos du) = / E(cos ) du
9 u u

Employing (23) with v = and = 0,

t
7

(25) x Q (t) = / cos(p 0) exp(-e (1-p, )/2) du ,u u

where p = exp(-au). Therefore, since

b b b
[ / (h(x)dx)] = / / h(x) h(y) dx dy,
a a a



(26) x
2
(t) = / / cos(p

in
6) cos(p 9) exp(-6 (l-p

2
)/2)

9 u v U

x exp(-£ (1-p )

2
/2) dudv

If cos is replaced by sin in (26) , the result is an expression

2
for y

Q
(t). Using the fact that cos(p 0) cos(p 9)+sin(p 0) sin(p I

= cos((p - p )0), we therefore have

(27) x
2
(t) + y?(t) =/ / cos((p-p)9) exp(-S (2-p

2
-p

2
)/2)dudv.

Since (pu
-p

v)9
~ N(0,S (pu

-p
v )

2
) ,

(28) E(xg(t) + Yg(t))

t t
2

= / / exp(-6 (p -p ) V2) exp(-S (2-p^-P;)/2)dudv ,u v u v

or

(29) E(x2
(t) + Yg(t))

t t
= / / exp(-0 [1 - exp(-a(u+v) ) ] ) dudv

We turn next to computation of vv (t) and v (t)
t X y

Since X (t) = / cos du ,

10



2
t t

(30) X (t) = / / cos 9 cos 9 du dv.
u v

2
If cos is replaced by sin in (30) , an expression for Y (t)

results. Since cos cos 9 + sin 9 sin 9 = cos (9 - 9 ),u v u v u v

2 2
t fc

(31) X (t) + Y (t) = / / cos(9 - 9 ) du dv
u v

From (23), 9-9 ~N(-6 (1-p), 6 (1-p
2

) ) for u >«v. Since

9 ~ N(0,3) ,v

(32) 9 - 9 - N(0,B (1-p)
2

+ S (1-p
2
)) for u >_ v ,

or

(33) (9 - 9 ) ~ N(0, 26 [1 - exp(-alu-vl) ])

Returning to (31), we finally obtain

t t
(34) E(X 2

(t) + Y
2
(t)) =11 exp(-B[l - exp (-a I u-v I ) ] ) dudv

Substituting (34) and (29) into (4), one obtains a long

2
but nonetheless explicit formula for s. as a function of a

and 3 .* Since

11



(35) x(t) = tE(cos 9) = t exp(-3/2) ,

2 ... 2
maximizing s for fixed x(t) is the same as maximizing s

2
for fixed 3 . The maximized s , after being divided by

2 2
t - x (t) , is shown in Figure 1. Figure 2 shows the optimal

2 2 2
product at as a function of (x(t)/t) . Figure 3 shows s

t
/t

as a function of at for 3=1, showing that it is better for

the particle to make at too large than too small

.

Further analysis is possible in case 3 is very large or

very small. After making a change of variable for |u-v| in (34) and

for u + v in (29), the result is, with z = at

z x
(36) s^/t

2
= F(3 ,z) = Xr I dx / A(y)dy ,ZOO

where

(37) A(y) = exp[-B(l - exp(-y))] - exp[-0(l - exp(-2y))]

When 3 is very small,

< 38 ) A(y) ~ 3 [exp(-y) -exp(-2y)] (small 3)

2After integrating (38) twice and multiplying by (4/z ), one obtains

< 39 ) F(3,z) ~3g(z) , (small 3)

12



where g(z) is the same function as in the random tour analysis

2 2 2 2
(eqn (22)) . Furthermore, since t - x (t) = t (1 - exp(-B)) ~ t S

when 6 is small,

(40) s
t
/(t2 ' x2(t)) Z 9( z

)
(small S)

When S is small, z should therefore be set to 1.9, in which

case g(z) = .381.

Since lim„ F (S , z) =0 for z > 0, the optimal z must

approach as S becomes large. Since y <_ x <_ z in (36) ,

y and x are small if z is. For small y,

(41) A(y) ~ exp(-By) - exp(-2Sy) (small y)

2
After integrating (41) twice and multiplying by (4/z ) , one obtains

(42) F(B ,z) ~ g(S z) (small z)

where g(») is once again the same function (22) . Therefore

lim F(S, 1.9/S) = g(1.9) = .381;

6 * °°

2 2
that is, the particle can make s./t asymptotically .381

2 2 2when 8 is large by making z = 1.9/S . Since t and t - x (t)

2 2 2
are asymptotically equal when 6 is large, s /(t - x (t)) is also

2 2 2
asymptotically .381. Thus, the ratio s./(t - x (t)) is bounded

by .381 in all cases examined.

13



ACKNOWLEDMENT

This research was conducted while acting as consultant

to ORI, Inc., and reported on separately.

REFERENCES

REFERENCES

1. Feller, William, "An Introduction to Probability Theory and
its Applications, " Vol . II, Wiley Tp~! 336) .

2. Grenander, Ulf, "A Tactical Study of Evasive Maneuvers," FOA
reports, Vol. 2, No. 4, Research Institute of National Reference
Stockholm 80, Sweden (1968)

.

3. Washburn, Alan, "Probability Density of a Moving Particle,"
Opns. Res. 17, 861-871 (1969).

14





Opt



17



INITIAL DISTRIBUTION LIST

COPIES

Dean of Research 1

Code 012
Naval Postgraduate School
Monterey, California 93940

Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

Commanding Officer 1

Air Test and Evaluation Squadron 1 (VX-1)
Patuxent River, Maryland 206 70
Attn: Code 713

Commanding Officer 1
Submarine Development Group Two
Groton, Connecticut 06340

Director 1
Strategic Systems Project Office
1931 Jefferson Davis Highway
Arlington, Virginia 20376
Attn: Code SP2021

Naval Air Development Center 1
Code 202 2

Johnsville, Pennsylvania 18974

Center for Naval Analysis 1
1401 Wilson Boulevard
Arlington, Virginia 22209

Naval Weapons Laboratory 1
Dahlgren, Virginia 22448

Naval Weapons Center 1
China Lake, California 93555

Naval Surface Weapons Center 1
White Oak
Silver Spring, Maryland 20910

Naval Research Laboratory 1
Washington, D.C. 20390

18



David Taylor Naval Ship Research & Development Center 1

Bethesda, Maryland 200 34

Naval Ocean Systems Center 1
San Diego, California 92132

Naval Intelligence Support Center 1
4301 Suitland Road
Washington, D.C. 20390

Naval Electronics Systems Command 1
2511 Jefferson Davis Highway
Arlington, Virginia 20360

Naval Underwater Systems Center 1

Code SA33
New London, Connecticut 06320

Naval Ship Engineering Center 1

Hyattsville, Maryland 20782

Naval Coastal Systems Laboratory 1

Panama City, Florida 32401

Naval Air Systems Command 1

Code 370
Washington, D.C. 20361

Naval Sea Systems Command 1
Code 03424
Washington, D.C. 20 362

Naval Underwater Systems Center 1

Newport, Rhode Island 02840

Naval Ordnance Station 1

Indian Head, Maryland 20640

Naval Surface Weapons Center 1

Dahlgren, Virginia 22448

Anti-Submarine Warfare Systems Project Office 1

Code ASW-13 7

Department of the Navy
Washington, D.C. 20360

Office of Naval Research 1

Code ONR-2 30
800 North Quincy Street
Arlington, Virginia 22217

19



No. of Copies

Office of Naval Research 1

Code ONR-4 34
800 North Quincy Street
Arlington, VA 22 217

Daniel H. Wagner, Associates 1

Station Square One
Paoli, PA 19301

Tetra Tech, Inc . 1

1911 Fort Meyer Dr.
Suite 601
Arlington, VA 22209

Systems Planning and Analysis 1
1600 Wilson Blvd.
Suite 700
Arlington, VA 22 209

ORI, Inc. 1
1400 Spring St.
Silver Spring, MD 20910

Naval Postgraduate School
Monterey, Ca . 9 39 40
Attn: R. N. Forrest, Code 55Fo 1

A. R. Washburn, Code 55Ws 10
R. J. Stampfel, Code 55 1
Library, Code 55 1

20





No. of Copies

Office of Naval Research 1

Code ONR-4 34
800 North Quincy Street
Arlington, VA 22 217

Daniel H. Wagner, Associates 1

Station Square One
Paoli, PA 19301

Tetra Tech, Inc. 1

1911 Fort Meyer Dr.
Suite 601
Arlington, VA 2220 9

Systems Planning and Analysis 1

1600 Wilson Blvd.
Suite 700
Arlington, VA 22 209

ORI, Inc. 1

1400 Spring St.
Silver Spring, MD 20910

Naval Postgraduate School
Monterey, Ca . 9 39 40
Attn: R. N. Forrest, Code 55Fo 1

A. R. Washburn, Code 55Ws 10
R. J. Stampfel, Code 55 1
Library, Code 55 1

20



U1902 10



DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01069333 6


